Cheatsheet Physik

Christian Rybovic Juli 2025

1 Internationales Einheitensystem (SI)

Das internationale Einheitensystem besteht aus sieben Basiseinheiten und vielen abgeleiteten Einheiten. Für einige abgeleitete Einheiten wurden eigene Namen und Einheitenzeichen definiert.

1.1 Basiseinheiten

m → Met	ter	Länge
<i>kg</i> → Kilo	gramm	Masse
s → Sek	unden	Zeit
$A \rightarrow Am$	pere	Stromstärke
K → Kelv	/in	Temperatur
mol → Mo		Stoffmenge
<i>cd</i> → Can	idela	Lichtstärke

1.2 Abgeleitete Einheiten

Newton	Kraft	
Joule	Energie	
Watt	Leistung	
Hertz	Frequenz	
Pascal	Druck	
Radiant	Winkel	
	Newton Joule Watt Hertz Pascal Radiant	Joule Energie Watt Leistung Hertz Frequenz Pascal Druck

Die abgeleiteten Einheiten können sowohl mit Basis- als auch mit abgeleiteten Einheiten kombiniert werden.

$$1N = 1 kg \cdot m \cdot s^{-2} = 1 \frac{kg \cdot m}{s^{2}} = 1 \frac{J}{m}$$

$$1J = 1 kg \cdot m^{2} \cdot s^{-2} = 1 \frac{kg \cdot m^{2}}{s^{2}} = 1 N \cdot m = 1 W \cdot s$$

$$1W = 1 kg \cdot m^{2} \cdot s^{-3} = 1 \frac{kg \cdot m^{2}}{s^{3}} = 1 V \cdot A = 1 \frac{J}{s}$$

$$1Hz = 1 s^{-1} = \frac{1}{s}$$

$$1Pa = 1 kg \cdot m^{-1} \cdot s^{-2} = 1 \frac{kg}{m \cdot s^{2}} = 1 \frac{N}{m^{2}}$$

$$1rad = 1 \frac{1m}{1m} = 1 = \frac{360^{\circ}}{2 \cdot \pi} = \frac{180^{\circ}}{\pi} \approx 57.3^{\circ}$$

1.3 Einheitenpräfixe

Das Vielfache oder der Bruchteile einer Einheit kann mit Einheitenpräfixen angegeben werden. Dies erlaubt eine übersichtlichere Darstellung von sehr grossen oder sehr kleinen Werten.

G	\rightarrow	1 000 000 000	Giga	
М	\rightarrow	1 000 000	Mega	
k	\rightarrow	1 000	Kilo	
h	\rightarrow	100	Hekto	
		1		
d	\rightarrow	0,1	Dezi	
С	\rightarrow	0,01	Zenti	
m	\rightarrow	0,001	Milli	
μ	\rightarrow	0,000 001	Mikro	
n	\rightarrow	0,000 000 001	Nano	

1.3.1 Grössen umrechnen

Grössen können umgerechnet werden, indem die jeweiligen Faktoren eingesetzt und die Werte ausgerechnet werden.

$$\frac{km/h \text{ umrechnen in } m/s}{1 \text{ km} = 1000 \text{ m}} \qquad 1 \text{ h} = 3600 \text{ s}$$

$$15 \text{ km/h} = 15 \cdot \frac{1000m}{3600s} = \frac{15000}{3600} \frac{m}{s} = 4.17 \text{ m/s}$$

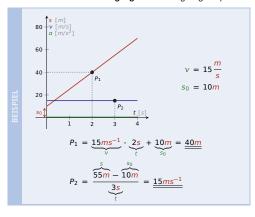
1.4 Konstanten

$$\pi = 3.141592...$$
 Pi
 $c = 299792458 \frac{m}{s}$ Lichtgeschwindigkeit
 $g = 9.81 \frac{m}{s^2}$ Erdbeschleunigung
 $T_0 = -273.15^{\circ}C = 0 \text{ K}$ Absoluter Nullpunkt

1.5 Bogenmass

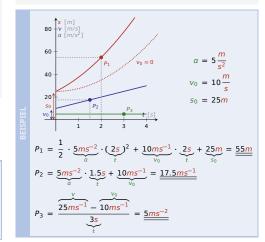
$$30^{\circ} = \frac{1}{6}\pi$$
 $45^{\circ} = \frac{1}{4}\pi$ $90^{\circ} = \frac{1}{2}\pi$
 $180^{\circ} = \pi$ $270^{\circ} = \frac{3}{2}\pi$ $360^{\circ} = 2\pi$

2 Mechanik


2.1 Translation

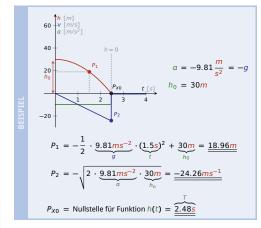
Bei einer Bewegung unterscheidet man zwischen einer gleichförmigen und einer ungleichförmigen Bewegung, wobei die ungleichförmige Bewegung eine gleichmässige oder ungleichmässige Beschleunigung hat.

2.1.1 Gleichförmige Bewegung


$$s \rightarrow \text{Weg}[m]$$

 $v \rightarrow \text{Geschwindigkeit}[m/s]$ $s = v \cdot t + s_0$
 $t \rightarrow \text{Zeit}[s]$ $v = \frac{s - s_0}{t} = konst.$
 $s_0 \rightarrow \text{Anfangsweg}[m]$

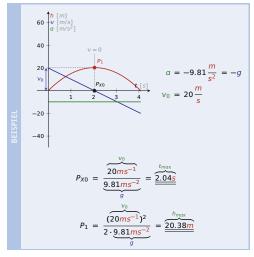
Bei einer gleichförmigen Bewegung ist die **Geschwindigkeit konstant** und die **Beschleunigung 0**. Der Anfangsweg ist optional.


2.1.2 Ungleichförmig gleichmässige Bewegung

$$s \rightarrow \text{Weg}[m]$$
 $v \rightarrow \text{Geschwindigkeit}[m/s]$
 $s = \frac{1}{2} \cdot a \cdot t^2 + v_0 \cdot t + s_0$
 $a \rightarrow \text{Beschleunigung}[m/s^2]$
 $t \rightarrow \text{Zeit}[s]$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s}$
 $v = a \cdot t + v_0 = \sqrt{2 \cdot a \cdot s$

Die Formel kann auch für den freien Fall angewendet werden. Hier wird als Beschleunigung die Erdbeschleunigung verwendet.

$$\begin{array}{ll} h \to \operatorname{Fallh\"{o}he}[\emph{\emph{m}}] & h = -\frac{1}{2} \cdot g \cdot t^2 + h_0 \\ v \to \operatorname{Fallgeschwindigkeit}[\emph{\emph{m}/s}] & v_E = -\sqrt{2 \cdot g \cdot h_0} \\ v_E \to \operatorname{Endgeschwindigkeit}[\emph{\emph{m}/s}] & \tau = \sqrt{\frac{2 \cdot h_0}{g}} \end{array}$$



Ein senkrechter Wurf besteht aus einer **gleichförmigen** Aufwärtsund einer **gleichmässigen** Abwärtsbewegung.

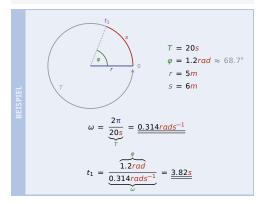
Bei der Gesamtbewegung eines senkrechten Wurfs wird von der Aufwärtsbewegung die Abwärtsbewegung abgezogen.

Wenn ohne Anfangshöhe gerechnet wird, dann kann die Gesamtwurfzeit mit 2 × t_{steig} angegeben werden.

2.2 Rotation

2.2.1 Winkelangaben

Die Winkelweite φ wird zur Berechnung der Winkelgeschwindigkeit ω immer im Bogenmass angegeben.


Für die Umrechnung zwischen Gradmass und Bogenmass können folgende Formeln verwendet werden.

$$\varphi \,=\, \frac{\pi}{180} \cdot \alpha \qquad \qquad \alpha \,=\, \frac{180}{\pi} \cdot \varphi$$

2.2.2 Winkelgeschwindigkeit

Die Winkelgeschwindigkeit beschreibt die zeitliche Änderung des Winkels φ . Unabhängig des Radius hat die Winkelgeschwindigkeit immer den gleichen Wert.

$$\begin{array}{lll} \omega & \rightarrow & \text{Winkelgeschw.} [\textit{rad/s}] \\ \phi & \rightarrow & \text{Rotationswinkel} [\textit{rad}] \\ v_B & \rightarrow & \text{Bahngeschw.} [\textit{m/s}] \\ s & \rightarrow & \text{Strecke} [\textit{m}] \\ t & \rightarrow & \text{Zeit} [\textit{s}] \\ r & \rightarrow & \text{Radius} [\textit{m}] \\ T & \rightarrow & \text{Umlaufzeit} [\textit{s}] \end{array} \qquad \begin{array}{ll} s = \phi \cdot r \\ \omega = \frac{d\phi}{dt} = \frac{2\pi}{T} = \frac{v_B}{r} \end{array}$$

2.2.3 Bahngeschwindigkeit

Die Bahngeschwindigkeit ist zusätzlich abhängig vom Radius. Je weiter ein Objekt entfernt ist, desto schneller muss es sich bewegen um den gleichen Winkel zurück zulegen.

2.3 Kraft

$$F \rightarrow \text{Allg. Kraft } [N]$$
 $m \rightarrow \text{Masse } [kg]$
 $F = m \cdot a$
 $F_G \rightarrow \text{Gewichtskraft } [N]$
 $F_G = m \cdot g$
 $F_S \rightarrow \text{Federspannkraft } [N]$
 $F_S = D \cdot s$
 $D \rightarrow \text{Federharte } [N/m][kg/s^2]$
 $S \rightarrow \text{Längenänderung } [m]$
 $F_Z \rightarrow \text{Zentripetalkraft } [N]$

2.4 Energie

Mechanische Energie kann beispielsweise in potentieller Enerige (Lageenergie), kinetischer Energie (Bewegungsenergie) oder Spannenergie vorliegen.

$$E_{pot} = m \cdot g \cdot h$$

$$E_{pot} \rightarrow \text{Lageenergie [J]}$$

$$E_{kin} \rightarrow \text{Bewegungsenergie [J]}$$

$$E_{spa} \rightarrow \text{Spannenergie [J]}$$

$$k \rightarrow \text{Federkon. [N/m][kg/s^2]}$$

$$x \rightarrow \text{Änd. Ruhelänge [m]}$$

$$E_{kin} = \frac{1}{2} \cdot m \cdot v^2$$

$$E_{spa} = \frac{1}{2} \cdot k \cdot x^2$$

$$k = \frac{2 \cdot E_{spa}}{x^2}$$

$$x = \sqrt{\frac{2 \cdot E_{spa}}{k}}$$

2.4.1 Energieerhaltungssatz

In einem abgeschlossenen System bleibt die Gesamtenergie konstant. Energie kann somit weder erzeugt noch vernichtet werden. Daher kann diese beliebige zwischen den Energieformen umgewandelt werden.